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An important public health challenge has been the need to protect children's health. To accomplish
this goal, the scientific community needs scientifically based child-specific risk assessment
methods. Critical to their development is the need to understand mechanisms underlying children's
sensitivity to environmental toxicants. Risk is defined as the probability of adverse outcome and
when applied to environmental risk assessment is usually defined as a function of both toxicity and
exposure. To adequately evaluate the potential for enhanced health risks during development, both
child-specific factors affecting toxicity and exposure need to be considered. In the first section of
this article, example mechanisms of susceptibility relevant for toxicity assessment are identified and
discussed. In the second section, examples of exposure factors that help define children's
susceptibility are presented. Examples of pesticide research from the newly funded Child Health
Center at the University of Washington will be given for illustration. The final section discusses the
importance of putting these considerations of children's susceptibility into an overall framework for
ascertaining relevancy for human risk assessment. Key words: developmental toxicity,
mechanisms, neurotoxicant, organophosphate, pesticide, risk assessment. - Environ Health
Perspect108(suppl 11:13-21 (2000).
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Introduction
Identification, characterization, and control
of environmental chemicals that adversely
impact normal reproduction and develop-
ment continue to be key public health goals.
Approximately 250,000 U.S. children are
born each year with birth defects diagnosed at
or shortly after birth. Birth defects are the
leading cause of infant mortality in the
United States. Congenital anomalies, sudden
infant death syndrome, and premature birth
combined account for more than 50% of all
infant mortality, yet the cause of most birth
defects is unknown. Approximately 3-10%
have been attributed to exogenous and envi-
ronmental agents. Those environmental
agents known to cause birth defects include
lead; polychlorinated biphenyls; ethanol;
organic mercury; and drugs such as thalido-
mide, diethylstilbestrol, valproic acid, and 13-
cis-retinoic acid. Most of these agents have
been identified as developmental toxicants
after tragic human exposures occurred (1,2).

Up to 70% of all birth defects are of
unknown etiology, and the role that environ-
mental factors play in these occurrences is
unknown. This lack of information impedes
our ability to develop effective public health
prevention strategies and has served as the
foundation for increased public awareness
and reinvigorated basic research on birth
defects and children's health. When statistics
about the number of years of potential lives
lost are calculated for developmental effects
and disabilities, these economic costs rival
those for heart disease and cancer. Thus,
identification of prevention pathways could
alleviate not only social but also significant
economic costs (3).

Purpose
The purpose of this article is to identify key
factors that can help define the vulnerability
of developing offspring, infants, and children
to toxicant impacts and to give scientists clues
for potential mechanisms that need to be
evaluated to support the scientific basis for
child-focused risk assessment. A focus of this
article will be pesticides, given the heightened
visibility of children and pesticide exposure
following the 1993 National Academy of
Sciences report titled "Pesticides in the Diets
of Infants and Children" (4) and the specific
focus of the recent Food Quality and
Protection Act (5) . Environmental Health
Perspectives recently published a special issue
(6) on research newly funded under the
Child Health grants program at the National
Institute of Environmental Health Sciences
and the U.S. Environmental Protection
Agency (U.S. EPA) that provided an impor-
tant opportunity to highlight examples of fac-
tors that need to be researched when assessing
the potential susceptibility of children. This
review uses the risk assessment paradigm for
context, emphasizes examples of both in utero
and postnatal developmental assessments, and
introduces the related research aims of the
University of Washington Center for Child
Environmental Health Risks Research or
Child Health Center.

Why Study Mechanisms
ofSusceptibility?
Risk is defined as the probability of adverse
outcome and when applied to environmental
health, risk assessment is usually defined as a
function of both toxicity and exposure.
Figure 1 shows a pictorial framework for

child-specific risk characterization. To
adequately evaluate the potential for enhanced
health risks during development, scientists
must consider child-specific factors affecting
both toxicity and exposure. In the first section
of this review, mechanisms of children's sus-
ceptibility relevant for toxicity assessment are
identified and discussed. In the second sec-
tion, examples of exposure factors that help to
define children's susceptibility are presented.
The final section discusses the implications of
considering these factors for risk assessment.

Pesticides as Example Environmental
Toxicants of Interest
Extensive use of pesticides to control insects
and pests in order to protect human health
and property and assist in food production
has furthered public health worldwide. But
many pesticides currently in use were regis-
tered by federal and state agencies before cur-
rent toxicological testing protocols were
developed or available. The effects of pesti-
cides on children's learning and development
have not received sufficient attention to date,
and as a result there are few tests available to
evaluate these behavioral end points. A
National Academy of Sciences report (4)
identified the lack of information as a public
health issue and emphasized the importance
of elucidating the health consequences of
childhood exposures. The impacts of neuro-
toxicant exposure (e.g., pesticides) during
development are of special interest because of
the sensitivity of the developing nervous sys-
tem to environmentally mediated toxicity;
because normal nervous system functioning is
essential to human activity, learning, and
development; and because developmental
effects will have consequences over an
individual's entire life. On the U.S. EPA
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Figure 1. Framework for child-specific risk characterization.

website (http.//www.epa.gov/pesticidesi), three
key studies were discussed recently that re-
emphasized the need to evaluate such
chemicals for developmental neurotoxicity.

Mechanisms of Susceptibility:
Toxicity Assessment
The complexity of normal development is
reflected in the many integrated events that
regulate cell growth, differentiation, and
morphogenesis. Consequently, alterations at
the molecular and cellular level that underlie
subsequent developments may never be fully
described. Of the myriad potential effects of
environmental toxicants on these processes,
scientists have focused their attention toward
identiflcation of critical or rate-limiting
processes in which alterations would have
significant manifestations in development,
growth, and function. Wilson identified such
critical processes as including altered mitosis,
nucleic acid biosyntheses, membrane func-
tion/signal transduction, energy sources,
inhibition of enzymes, and mutations (7).
Research has confirmed the ability of envi-
ronmental chemicals to alter these processes/
pathways and to produce significant adverse
impacts on development. The significance of
these alterations to human health must be
put within a risk assessment framework in
which factors such as dose and time of expo-
sure are included in the overall characteriza-
tion. This will allow public health decision
makers to develop appropriate risk manage-
ment strategies that minimize children's risk
from the environment.

It is not the intent of this article to revisit
all of the critical developmental pathways
and the agents that disrupt them but to use
example processes to illustrate child-specific
factors that underlie susceptibility to envi-
ronmental exposures. In this review, alter-
ations in neuronal cell division, cell number,
and differentiation are used as example

cellular processes. Three factors are used to
illustrate toxicity assessment considerations
relevant for defining mechanisms of suscepti-
bility-temporal, dose response, and genetic
susceptibility considerations.

Illustration ofTemporal Mechanisms
ofSusceptibility
Development of the human central nervous
system (CNS) involves the production of 100
billion nerve cells and 1 trillion glial cells.
Once produced, these neurons undergo
migration, synaptogenesis, selective cell loss,
and myelination. This development occurs
unidirectionally, and inhibition at one devel-
opmental stage can cause alterations to subse-
quent processes (8,9). Figure 2 illustrates
overall brain development by showing tissue
hierarchy and neural origins for the ectoder-
mally derived neural plate. Cell proliferation
patterns are shown for specific example nuclei
within the brain and demonstrate differences
in the timing of peak periods of cell replica-
tion (Figure 2). Figure 3 outlines neuro-
developmental stages observed throughout the
brain. These stages occur in temporally dis-
tinct time frames across different brain
regions, making the brain heterogeneous in
response to agents that interfere with these
specific processes. For example, Figure 2
demonstrates the production of nerve cells in
different regions of the CNS during gestation
in the rat, and as shown, nuclei in the mid-
brain, cortex, and hippocampus undergo
nerve cell production during distinct time
frames. In addition to intraorgan differences
in developmental processes, there may be sub-
stantial interspecies differences between
rodents and humans in the development of
the brain. Whereas in rodents the production
of dentate gyrus granule cells of the hip-
pocampus is largely conducted postnatally, the
main production of these cells occurs prena-
tally in the human (10). Thus the behavioral

and morphologic outcomes of gestational
exposure to toxicants that cause cell death or
that disrupt the cell cycle (e.g., cell-cycle
inhibitors such as methyl mercury, taxol, vin-
cristine, colchicine, 5-fluorouracil) would
depend on dose and duration of exposure and
the populations of potentially susceptible neu-
ronal nuclei undergoing production at the
time of exposure (11,12).

The historic use of organomercury-based
fungicides and the present-day use of the
benomyl and other benzimidazole analogues
as anthelmintics are examples of cell-cycle
inhibitors that have been investigated with
regard to their influence on the developing
CNS (13-17). Recent reports suggesting
that chlorpyrifos (a pesticide used on many
fruit crops such as apples, cherries, and pears)
can cause selected brain cell loss also merit
additional investigation (18,19).

Unlike other organ systems, the uni-
directional nature ofCNS development limits
the capacity of the developing tissue to com-
pensate for cell loss, and environmentally
induced cell death can lead to a permanent
reduction in cell number (20). Maintenance
of this rigid temporal and spatial schedule
allows the CNS to develop the morphologic
characteristics associated with optimal func-
tion. It is this developmental complexity that
appears to underlie the sensitivity of this
organ to environmental influences and high-
lights the unique characteristics of develop-
ment that make children at special risk from
environmental exposures.

Identification of such critical processes is
essential to our understanding of mechanisms
of susceptibility. Thus, one of the laboratory-
based research projects in the new Child
Health Center at the University of
Washington will focus on our understanding
of the impacts of altering such critical neural
processes and subsequent neurobehavioral
function (21). Using three pesticides from
different classes, these projects will use in
vitro and in vivo rat systems to test the
hypothesis that certain pesticides affect learn-
ing, growth, and development by altering the
balance of cell proliferaion and cell death
associated with development.

Dose-Response Considerations
for Mechanisms ofSusceptibility
The developing nervous system also provides
an excellent illustration of the role of
dose-response relationships in susceptibility.
For example, classic studies with radiation
exposures in the rat have shown steep
dose-response relationships for brain malfor-
mations where a doubling of dose (50-100
rads) on day 9 of rodent gestation can cause a
greater than 4-fold increase in rat brain mal-
formations (9-41% incidence). At 200 rads, a
78% incidence of brain malformations was
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observed. On day 10, one day later in
gestation, exposure to 50 rads does not pro-
duce brain malformations. Exposure to 100
rads produces only a 3% incidence, but
exposure to 200 rads produces a 19% inci-
dence. If exposure occurs earlier, on day 8,
neither exposure to 50 nor 100 rads produces
brain malformations (7). These observations
convey the significance of evaluating both
the dose and the timing of exposure to deter-
mine the stage and process of development
that will be impacted. The relevancy of these
observations is known for radiation exposure
in humans, where irradiation of the human
fetus at doses of 100 rads early in pregnancy
can cause brain malformations such as
microcephaly and mental retardation (22).

Cross-species comparison studies assessing
methyl mercury exposure have been able to
show consistent effects on neuronal cell
number, differentiation, and morphologic
organization at similar doses (22,23). In
both examples, radiation and methyl mer-
cury exposure altered cell number and cell
division; these impacts have been postulated
as modes of action for the observed adverse
effects in neuronal development. The poten-
tial implications of such observations are evi-
dent when evaluated in context with research
showing that altered cell proliferation and
focal neuropathologic effects have been
linked with specific neurobehavioral deficits
(e.g., autism) (23-28).
A major emphasis of the molecular

mechanisms project on our newly funded
Child Health Center is on the evaluation of
the potential impact of pesticides on neuronal
cell replication and number, linking molecular
events with in vivo neurobehavioral assess-
ments. Frequently, the dose-response relation-
ships established at a molecular/cellular level of
assessment are inadequately linked with organ
or whole-organism functional effects. Thus the
significance of environmental contaminant-
induced changes at the molecular level is inad-
equately utilized in risk assessment. It is a goal
of our new Child Health Center to examine
the links of all such changes with potential
functional consequences.

Genetic Susceptibility
Genetic factors are also well recognized
though poorly understood components con-
tributing to individual variability in develop-
mental responses to environmental exposures.
Although associations linking specific genetic
makeup (genotype) and enzyme function or
protein activity (phenotype) to disease out-
come have been explored extensively for
cancer, research has been less focused on non-
cancer end points. However, where research
has been conducted, it is clear that individual
geno-phenotype can play a role in disease
susceptibility (29,30).

Relevant for evaluating gene-environment
relationships for developmental risk assess-
ments are the known variations in drug
metabolism enzymes associated with altered
susceptibility to toxicant-induced birth
defects. For example, extensive research by
Nebert and colleagues (31) using early animal
models has shown the importance of Ah
receptor status and teratogenic response to
benzo[a]pyrene, which requires metabolic acti-
vation by P450 enzymes. In human studies,
the activity of the drug-metabolizing enzyme
epoxide hydrolase has been linked with suscep-
tibility of offspring to developmental toxicity
following maternal exposure to diphenylhy-
dantoin (32-34) and McCarver-May et al.
(35) have shown that mothers who drink alco-
hol and have the alcohol dehydrogenase 2*3
allele are at lower risk of having a child with an
adverse developmental outcome.

The examples described above demon-
strate the importance of evaluating genetic

Ontogeny of various
organs and tissues

variations in drug-metabolizing enzymes as
genetic susceptibility factors important for
developmental risk assessment. In addition
to drug metabolism, however, genetic vari-
ability in growth factor regulators and
homeobox genes may also underlie suscepti-
bility. For example, an elevated risk of cleft
palate has been reported for infants of moth-
ers who smoke and carry an uncommon
allele for transforming growth factor alpha
(36-38). An increased risk of birth defects
in smoking mothers has also been associated
with a polymorphism in the homeobox
genes (MSX) responsible for vertebrate limb
development. Frequencies of rare alleles in
the MSX1 locus were higher in infants with
limb deficiencies when they were compared
with infants with other types of birth
defects. These risks were increased 4- to
5-fold when the infants who carry the rare
alleles were from mothers who smoked
during pregnancy (39).
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Figure 2. Illustration of overall rat brain development: tissue ontogeny and profiles of peak neuroepithelial cell
proliferation within specific brain regions and nuclei throughout gestation. Figure adapted from Rodier et al. (11)
with permission of John Wiley & Sons, Inc.

Call proliferation Call migraton Differentiation and Selecive Myelination

Figure 3. Illustration of overall brain development. This figure shows neurodevelopmental stages from the profile of
neuroepithelial cell proliferation across brain regions (Figure 2) through processes of neuronal maturation (cell migra-
tion, differentiation, cell loss, and myelination) during normal brain development. Figure depicts pathway for neuronal
maturation during normal brain development.
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Because individual susceptibility to
environmental exposures likely involves spe-
cific genetic traits in combination with envi-
ronmental exposures and other factors in
order to produce disease, the nature of these
multifactorial gene-environment interactions
is likely to change throughout life. This is a
particularly relevant question in regard to
children's susceptibility to contaminants in
their environment because of the relatively
large changes in gene expression that occur
during development as well as the dynamic
nature of their changing lifestyle exposures.

A good example of this temporal sensitivity
in gene-environment interaction is seen with
methemoglobinemia, where both a temporal
and genetic susceptibility component must be
evaluated. Ingested nitrates can be converted
to nitrites by intestinal bacteria, and nitrite
ions can bind with hemoglobin, forming
methemoglobin, a form of hemoglobin with
reduced oxygen-carrying capacity. This reduc-
tion in oxygen capacity can result in anemia
or "blue baby syndrome" in infants who have
fetal forms of hemoglobin and less functional
methemoglobin reductase (MR). MR is an
enzyme that normally reduces methemoglobin
back to its oxygen-carrying state in adults and
older children. The enhanced susceptibility of
very young infants lacking or having mini-
mally functional MR to methemoglobemia
has been of concern for infants fed formula
prepared with water contaminated with high
agricultural runoff from nitrate fertilizers, as it
has been estimated that 40% of applied
nitrates can enter water sources as field
runoff/leachate (40). In addition to environ-
mental sources, chronic congenital methemo-
globinemias may also result from an inherited
deficiency of MR or abnormal amino acid
substitution in globin M and H chains (41).

An example of a potentially important
genetic susceptibility marker in pesticide neu-
rotoxicology is the polymorphism in the
paraoxonase (Pon 1) gene. This enzyme
metabolizes and inactivates a wide variety of
organophosphate (OP) oxons, the active
forms of OP pesticides, including methyl
parathion, which was recently severely
restricted by the U.S. EPA. By design, OP
pesticides inactivate acetylcholinesterase
(AchE)-mediated metabolism of acetylcholine
(ACh) by impairing AchE central and
peripheral nervous system activity.

The human Pon 1 gene has been cloned
and shown to have a polymorphism at posi-
tion 192. When arginine (Arg192) is present
at this position, Pon 1 hydrolyzes the OP
paraoxon rapidly; however, when this site is
replaced with glutamine (GIn192), paraoxon is
hydrolyzed more slowly (42,43).

The available research in this area
demonstrates a strong need to ascertain
individual geno-phenotype in which both

genetic polymorphism status is determined
and the enzyme activity is measured against
varied OP substrates. If an individual is
homozygous for the low-activity allele (Gln192)
and has low Ponl expression levels, then the
individual would hydrolyze both paraoxon and
the oxon of chlorpyrifos very slowly. Such an
individual would be predicted to be more sus-
ceptible to the effects of both these OP pesti-
cides than a comparable individual with high
Ponl expression (44). Whereas the activity of
the enzyme is high toward paraoxon when
arginine is at position 192 and low when glut-
amine is at this position, the situation is
reversed when the substrate is diazoxon,
soman, or sarin, demonstrating the need for
genotyping information for predictive risk
assessment (44).

Young animals are more sensitive to the
acute toxic effects of OPs than adult animals
(45-49). Brain ACh levels fail to account for
these differences, but metabolic studies have
suggested the differences may be due to an age-
related decrease in paraoxonase activity in
human infants and children. Levels of Pon 1
activity in rodents do not reach adult levels
until 4 weeks of postnatal development (50).
L. Costa and C. Furlong will direct a project in
the Child Health Center using Pon 1 knock-
out mice to ascertain both the potential age
and substrate susceptibility of OP-induced
developmental neurotoxicity and will link
these biochemical effects with functional
neurobehavioral impacts. The significance for
endogenous ACh metabolism and pesticide
toxicity is unknown. Gaining knowledge about
the age and genetic differences in this enzyme is
especially significant given the role that the
cholinergic system plays in learning and mem-
ory (51) and the new findings that suggest a
role for ACh in various aspects of normal brain
development (52-54). The Child Health
Center's paraoxonase polymorphism study will
address this research need.

Mechanisms of Susceptibility:
Exposure Assessment
Three examples of the types of exposure
considerations needed for evaluating chil-
dren's risks include a) differences in types of
exposures, b) unique pathways of exposure,
and c) child-specific toxicokinetics.

Types and Frequency ofExposures
Numerous reviews and discussions of
differences in the types of exposures that chil-
dren receive have been published (4,55,56). In
this section, several examples will be used to
illustrate two key points: the unique differences
in types of exposures that children may experi-
ence during each developmental phase, and the
dynamic nature ofthese exposure patterns.

Figures 4 and 5 show examples of the
types and quantity of dietary exposure from

specific food sources. This information was
prepared from a survey conducted in the
United Kingdom by Mills and Tyler in 1992
(56). This survey found that solid foods con-
sisting of cereals (baby rice or rusks) were
introduced to infants at approximately 13
weeks of age. Up to 20% of the infants in the
study were fed pureed fruits or vegetables,
and ingestion of fruit juices was common. By
6 months of age, approximately 60% of the
infants were reported to be ingesting at least
some of the same basic foods as the family.
For risk assessment purposes, such differences
over time in exposure profiles suggest distinct
exposure subgroups even within early child
development. These findings also suggest that
if adverse health impacts of an environmental
contaminant are suspected, the identification
of such impacts would be very difficult with-
out detailed knowledge of the exposure
patterns within these subgroups.

A unique exposure pathway of concern
for exposure of infants to environmental tox-
icants during their first year and a half of life
is the consumption of breast milk. Figures 4
and 5 show the relationship of breast milk in
comparison to other food sources. Breast
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Figure 4. Age-related consumption of foods and
beverages. Data from Lawrie (55) with permission of
Taylor & Francis.
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ages as a ratio of intake to body weight. Data from
Lawrie (55) with permission of Taylor & Francis.
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milk can be a source of exposure for infants
that not only reflects a subset of maternal
food consumption exposures (primarily lipid
extractable constituents) but also maternal
exposures to an array of exogenous chemical
compounds including drugs, occupational
and environmental metals, solvents, and pes-
ticides (57-62). Analyses of breast milk
residue that have focused on fat-soluble
residues have demonstrated the presence of
polyhalogenated biphenyls, dibenzodioxins,
dibenzofurans, and the organochlorine pesti-
cides (e.g., DDT), lindane, hexachlorocyclo-
hexane, dieldrin) in milk from mothers
worldwide, reflecting global transport of
these compounds (57,63-69). Recognition
that many of these compounds are environ-
mentally persistent has resulted in regulatory
controls and in generally declining residue
levels in humans for polychlorinated
biphenyls and DDT.

The partitioning of environmental
compounds to breast milk is strongly associ-
ated with the affinity of these chemicals for
milk lipids. In some cases, such as for the
organochlorine compounds, the half-life of
these compounds in breast milk can be
extremely long (70). Breast-feeding is a princi-
pal means of reducing maternal burden but at
the expense of exposure to the infant (70-72).
Because of the extremely long half-life of these
compounds in the mother, fetal exposure can
derive from a maternal body burden accumu-
lated over a period of many years. Thus expo-
sure estimates based on default exposure
assumptions can be problematic. Direct bio-
monitoring of breast milk is the most useful
metric for risk estimation. However, because
of the complexities of the kinetics of accumu-
lation, this biomonitoring provides limited
clues for ascertaining specific maternal expo-
sure patterns, as it presents an average estimate
of accumulated maternal exposures.

Despite the potential risks associated with
developmental exposure to environmental
contaminants in breast milk, breast milk also
provides a host of nutritional factors associ-
ated with immunologic and psychologic
development and general health. Limited for-
mal quantitative analyses have been per-
formed to evaluate the net health effects of
breast-feeding. However, the health benefits
associated with breast feeding have generally
been evaluated as outweighing the health
risks associated with most environmental
contaminants, with exceptions for some ther-
apeutics and illicit drugs (4,59,73-76).

Exposure Pathways-Age-Specific
Behaviors
Children face potentially elevated risk of
pesticide-induced toxicity due to age-specific
behaviors that can increase exposure. Younger
children have distinct dietary patterns, both in

terms of food selection and amounts
consumed (4). Younger children also routinely
explore their environment, putting fingers,
toys, and other objects into their mouths.
Hand contact with floors, carpet, lawns, and
other surfaces during crawling may lead to
enhanced exposure via hand-to-mouth and
object-to-mouth transfer. A subset of children
exhibit pica (deliberate ingestion of nonfood
items). In particular, soil ingestion rates of
geophagic (dirt-specific forms of pica) children
may be dramatically elevated, although they
are currently poorly defined (77). Children's
skin contact with surfaces via crawling or play
may also contribute to exposure to environ-
mental compounds even in the absence of
ingestion. The dermal availability ofmany pes-
ticides and the importance of the dermal path-
way with respect to occupational exposures in
agriculture are well established (78). Because
children have higher ratios of skin surface area
to body weight (roughly double in infancy)
than adults and probably experience more
intensive contact with their surroundings than
adults in nonoccupational settings, increased
susceptibility to dermal absorption of contami-
nants is plausible. Limited data from an inves-
tigation of inappropriate residential use of
methyl parathion suggest an association
between surface contamination and elevated
levels of pesticide metabolite in the urine of
children under 3 years of age (79). However,
the relative contributions of dermal absorption
and ingestion cannot be ascertained from the
information available.

In agricultural communities where
pesticides are used in crop production, chil-
dren have the potential for exposure through
additional pathways. If children live in close
proximity to pesticide-treated farmland, for
example, they may contact pesticides through
normal play in and around the home.
Children in agricultural communities can also
be exposed to workplace pesticides if parents
bring in these chemicals on clothing or skin.
This pathway is sometimes referred to as
take-home exposure (80).

Since 1992 several studies at the
University of Washington Pacific Northwest
Agricultural Safety and Health (PNASH)
Center (Seattle, WA) have focused their
research efforts on children's exposure to OP
pesticides in the agricultural regions of
Washington State (81,82). The first of these
studies examined pesticides in soil and house
dust. Concentrations of four OP pesticides
were substantially higher in the soil and
house dust at residences of so-called agricul-
tural families (families with a parent working
with pesticides in agriculture) than at the res-
idences of reference families (home at least
one-quarter of a mile from treated farmland
and no family member working in agri-
culture) (81). A subsequent study focused on

biological monitoring (urine sampling) of
children in the same community and found
that children of pesticide applicators had
median OP pesticide metabolite concentra-
tions that were 4 times higher than those of
reference children (82). Thus, both proxim-
ity to agricultural pesticide use and parental
take-home of pesticides appear to contribute
to elevated body burdens in young children
in this community. When urinary metabo-
lites were converted to pesticide dose esti-
mates for the OP pesticide azinphos-methyl,
53% of these doses exceeded the U.S. EPA
chronic reference dose of 0.015 ,ug/kg (83).
Recently, the U.S. EPA has taken action to
restrict azinphos-methyl use as a step to pro-
tect children's health by reducing exposure.
These results are consistent with results of
studies looking at other occupational take-
home exposure pathways. Several studies
have shown that at-home exposures of chil-
dren or family members result from a parent
worker being exposed to lead or asbestos
(84-87). Recently, homes and vehicles of
lead-exposed workers were found to have
higher levels of lead contamination than sim-
ilar homes and vehicles of families with no
take-home pathway (88,89). This evidence
supports the idea that contamination of a
worker's skin or clothing can lead to elevated
doses in children with whom they live.

As part of the Child Health Center, a
community intervention study to reduce take-
home pesticide exposure among agricultural
field workers is planned as a collaboration
between the Fred Hutchinson Cancer
Research Center (Seattle, WA) and the
PNASH Center. The study will take place in
the lower Yakima Valley, one of the most pro-
ductive agricultural regions in Washington
State. Interviews, environmental samples, and
biological samples will be collected in the first
and fourth years of the study. In the second
and third year, community-based intervention
strategies designed to break the take-home
exposure pathway will be implemented in 14
communities. An additional 14 communities
will serve as controls.

The role of pesticide drift as a contributor
to children's exposure will also be the subject
of investigation. With support from the Child
Health Center and the PNASH Center,
researchers will utilize two novel techniques for
characterizing exposure associated with pesti-
cide drift. Global positioning system technol-
ogy will be used to create detailed spatial and
temporal maps of children's activities. A
portable light detection and ranging (LIDAR)
system will be used to measure particle concen-
tration in spray plumes generated by airblast
orchard applications, and air sampling on the
ground will provide pesticide concentration
data needed to calibrate the LIDAR system.
The combination of these data will allow
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analysis of drift exposure for children with a
high degree of temporal and spatial resolution.
Simultaneous biological monitoring will allow
testing of exposure and dose models based on
environmental modeling.

Toxicokinetic Considerations
Important factors that define children's
susceptibility to contaminants are the age-
related toxicokinetic changes in development.
Toxicokinetics include evaluation of the four
processes of absorption, distribution, biotrans-
formation, and excretion of toxicants. In par-
ticular, it describes the rate of action of these
processes on contaminants and allows the risk
assessor to link exposure with the amount,
duration, and form of the toxicant interactions
with the target organs. For purposes of this
review, this section of the paper focuses on sev-
eral example changes occurring during preg-
nancy and early childhood that can affect the
doses that children and their tissues receive.

During pregnancy, many physiologic
changes occur, and these changes can impact
the kinetic aspects of chemicals (90). For
example, up to an 85% change in plasma
flow to the kidney has been observed during
pregnancy. This dramatic increase can facili-
tate elimination of many compounds nor-
mally removed via renal excretion and
minimize the amount of such compounds
that could reach the developing conceptus.
Blood albumin concentrations can decrease
during pregnancy and have been reported to

be lowered by up to 30%. This decrease in
plasma proteins could result in a change of
the ratio of chemical bound to plasma protein
versus free compound, thus altering the
amount of free compound available for trans-
port across membranes into specific organs.
In all cases, time-specific information is
needed to estimate the significance of these
changes for conceptal exposures, as these
physiologic changes occur with different rates
throughout the course of pregnancy.

Of particular interest in discussion of
mechanisms of susceptibility relevant for toxi-
cant exposure are kinetic conditions under
which the embryo/fetus would experience
greater concentrations of a contaminant than
the mother. Defining "protective" levels of
exposure in the mother would not necessarily
translate to protective levels for the concep-
tus. This can occur when the in utero com-
partment acts as a deep compartment.
Compounds that accumulate in fetal organs
include heavy metals, DDT, polyhalogenated
biphenyls, and tetracycline (90).

Although both fetal and maternal
biotransformation capabilities are important,
the ability of the conceptus and neonate to
biotransform chemicals to reactive metabo-
lites is especially relevant for our considera-
tions for two reasons. First, if the fetus
metabolizes a compound to a more charged,
less polar metabolite, this metabolite could be
kinetically hindered from crossing back across
membranes to be eliminated by the maternal

4A
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Fetal group

P450 isoforms

Figure 6. Evolution of cytochrome P450 isoforms in the human liver during growth in humans. Data from Cresteil 191)
with permission of Taylor & Francis.

elimination pathways. Thus, metabolite
concentrations could build up within the fetal
compartment. The other significant consider-
ation with embryonic/fetal metabolism is the
potential to generate reactive metabolites
within conceptal tissues with less well-
developed protective/conjugative pathways.

Figure 6 taken from Cresteil (91) shows
elegant work to evaluate the evolution of
various isoforms of human liver cytochrome
P450s in utero and throughout childhood. As
is evident from this figure, each isoform has
its own developmental profile. Given that
each isoform has its own organ and substrate
preference profiles, the complexity of pre-
dicting metabolite profiles for a given com-
pound or mixture is extremely challenging.
Even more challenging is using this informa-
tion for predicting human conceptal and
newborn risks for single agents or complex
mixtures. Evidence on the possible role of
genetic polymorphisms of drug-metabolizing
enzymes for human risk assessment was dis-
cussed in an earlier section of this paper on
genetic susceptibility.

The adage that "children are not just
small adults" has implications for establishing
safe levels of exposure for pesticides. This
means that exposure criteria should be based
onf information relevant to predicting risks to
children and should account for such toxico-
kinetic differences occurring with develop-
ment. These issues are partially recognized in
pharmaceutic dosing recommendations
through the use of allometric scaling to
account for age-related changes in body com-
position and activity. However, reliance on
such practices must be performed along with
consideration of chemical-specific characteris-
tics that influence both target organ exposure
and potency. Presented in Figures 7 and 8 are
examples of changes in body composition
(i.e., weight and surface area) during the first
17 years of life, both of which are commonly
used as scaling factors in pharmacologic
dosing determinations.

Lack of consideration of toxicokinetic and
toxicodynamic factors in establishing expo-
sure criteria for pesticide can lead to errors in
risk models. For example, if pesticide expo-
sure tolerance values are based on adults and
if pharmacokinetic parameters are linearly
scaled by weight, then a factor of 17.6 should
be used, whereas a factor of 8.2 should be
used if exposure should be linearly scaled by
surface area. Other allometric scaling factors
might be better described using total body
water, percentage intracellular water, total
body protein, total bone mineral, or other
factors. Clearly, the most fully informed deci-
sion will have detailed information regarding
the driving factors influencing absorption,
distribution, metabolism and elimination and
how they change with age (92).
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Figure 7. Age-dependent changes in surface area. Data
adapted from Renwick (92).
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Figure 8. Age-dependent changes in body weight (kg) or
weight/surface area (kg/m2). These (and other) body
composition metrics are commonly used to scale expo-
sures across age groups for pharmaceuticals. Data
adapted from Renwick (91).

Mechanisms of Susceptibility:
Framework for Risk
Assessment
Implications for Risk Assessment
The idea that "children are not just small
adults" has been reiterated in many recent
documents following the National Research
Council's 1993 report on "Pesticides in the
Diets of Infants and Children" (4), yet we
have continued to conduct risk assessments
for environmental agents in isolation of this
fact. This is due to several factors. First, the
scientific basis on how, when, and by how
much children differ from adults in their sus-
ceptibility to environmental insults is inade-
quate. This lack of scientific information was
highlighted in the 1997 National Research
Conference on Children's Environmental
Health: Research, Practice, Prevention, Policy
report (93) that made important recommen-
dations for research to address these deficien-
cies. In addition, risk assessment methods
have not yet been designed to utilize child-
specific susceptibility information to improve
public health evaluations even when such
information is available. Hence, we rely on
10-fold safety factors applied to the reference
dose for pesticides with suspected effects on
children when the true differences between
children and adult susceptibility may range
over multiple orders of magnitude.

In this review we have illustrated
examples of mechanisms that underlie the

Toxicokinetic
Conceptal brain tissue

toxicodynamics

Exposure -m mKidnOutcome
Conceptus ,2

Division Division

Figure 9. Examples of a limited TK and TD model for developmental risk assessment. Toxicodynamic, TD; toxicoki-
netic, TK. In this example a hypothesized TD model is shown to describe molecular and cellular events within the
conceptal brain. This TD model is linked with a hypothetical TK model describing toxicant delivery to the brain during
development. It serves as an example of the need to link both exposure and molecular effects to predict health risks
[For more details and explanation, please refer to Faustman et al. (94)].

susceptibility of children to environmental
exposures that are relevant for both toxicity
and exposure assessment. Such mechanisms
must be put into the context of the risk
assessment framework to be tied to effective
risk management. Failure to do this will result
in continued discussion of the relevancy of
factors for children's risk with little progress
made toward improving children's health.

In this paper we discussed mechanisms of
susceptibility for toxicity assessment and
highlighted the need to identify critical path-
ways of normal development that might be at
heightened risk for susceptibility to toxicant
impacts. An example discussed was neurons
in specific brain regions undergoing select
patterns of proliferation and differentiation.
On a molecular and cellular level we can, and
will, measure these effects as part of research
in our Child Health Center. However, for
risk assessment these observations need to be
drawn into a risk assessment context. What
health impacts result when 10, 15, or 20% of
neurons are lost on day 13 in rodent mid-
brains following exposure to a toxicant? To
answer this question, the functional conse-
quences of such loss must be evaluated and is
the underlying rationale for our planned
studies to link molecular and cellular changes
with altered neurobehavioral assessment.
Once this functional link is established, expo-
sure assessments must allow us to link these
functional effects with environmental expo-
sures. As discussed in this review, the com-
plexities of environmental exposure are great,
challenging the risk assessor both to under-
stand the biological significance of specific
exposures at selected times throughout gesta-
tion and to evaluate chronic low-dose expo-
sure over extended developmental processes.
Linkage of each of these types of exposures
with functional impacts is needed. To accom-
plish this we have developed linked models of
assessment where exposure, toxicokinetics,
and toxicodynamics can be considered in the

same risk models. Figure 9 illustrates such a
biologically based dose-response assessment
approach. In this model, developed for
methyl mercury and being expanded for
other toxicants/pesticides, we have unified
our risk assessment process (94,95). The
challenge to our center investigators is to
develop similar unifying approaches for our
molecular/cellular research that are linked
with functional assessments and with relevant
exposure assessment.

Finally, by framing the available
information in a risk assessment context,
both scientists and regulators will continue
the process of putting relevant science into
risk assessment. As indicated in the National
Academy of Sciences framework, only
through the iterative loop between basic
research and risk assessment can the informa-
tional needs of public health decision makers
be met. Moreover, by using the biologically
based risk assessment models to generate
hypotheses regarding factors that may
strongly influence child health risks, this
information can be used to prioritize research.
An example of the need for improved child-
specific risk assessment research is the recent
U.S. EPA-announced restriction on the use of
two organopesticides that are used commonly
on produce regularly eaten by children,
methyl parathion and azinphos-methyl
(Guthion). As we have demonstrated in this
review, there are many reasons to believe that
children may have unique sensitivities to their
environment. The health implications of
these sensitivities can only be understood
through continued research.
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